A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on Cn

نویسنده

  • S. THANGAVELU
چکیده

— We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on Cn. If f(z)e 1 4 |z| 2 is a Schwartz class function we show that f is supported in a ball of radius B in Cn if and only if f×μr(z) = 0 for r > B+ |z| for all z ∈ Cn. This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When n = 1 we show that the two conditions f × μr(z) = μr × f(z) = 0 for r > B + |z| imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter result does not generalize to higher dimensions. Résumé. — Nous prouvons un théorème de Paley-Wiener spectral pour le groupe d’Heisenberg en utilisant un théorème du support pour les moyennes sphériques tordues sur Cn. Si f(z)e 1 4 |z| 2 est une fonction dans la classe de Schwartz nous montrons que f a un support dans une boule de Cn de rayon B si et seulement si f×μr(z) = 0 pour r > B+ |z| et pour tout z ∈ Cn. C’est un analogue du théorème du support prouvé dans les contextes euclidiens et hyperboliques par Helgason. Lorsque n = 1 nous montrons que les deux conditions f × μr(z) = μr × f(z) = 0 pour r > B + |z| impliquent un théorème du support pour une grande classe de fonctions à croissance exponentielle. Il est surprenant de constater que ce dernier résultat ne se généralise pas aux dimensions supérieures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonharmonic Gabor Expansions

We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion‎. ‎In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity‎, ‎exactness and deficienc...

متن کامل

Real Paley-wiener Theorems for the Inverse Fourier Transform on a Riemannian Symmetric Space

The classical Fourier transform Fcl is an isomorphism of the Schwartz space S(Rk) onto itself. The space C∞ c (Rk) of smooth functions with compact support is dense in S(Rk), and the classical Paley-Wiener theorem characterises the image of C∞ c (R k) under Fcl as rapidly decreasing functions having an holomorphic extension to Ck of exponential type. Since Rk is self-dual, the same theorem also...

متن کامل

Paley-wiener Theorem for Line Bundles over Compact Symmetric Spaces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

A Paley-wiener Theorem for the Spherical Laplace Transform on Causal Symmetric Spaces of Rank 1 Nils Byrial Andersen and Gestur Olafsson

We formulate and prove a topological Paley-Wiener theorem for the normalized spherical Laplace transform deened on the rank 1 causal sym

متن کامل

Real Paley–wiener Theorems and Local Spectral Radius Formulas

We systematically develop real Paley–Wiener theory for the Fourier transform on Rd for Schwartz functions, Lp-functions and distributions, in an elementary treatment based on the inversion theorem. As an application, we show how versions of classical Paley–Wiener theorems can be derived from the real ones via an approach which does not involve domain shifting and which may be put to good use fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006